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Abstract-This paper addresses the determination of the evolution of the dynamic stress intensity
factor Kld (/) for a non-propagating crack subjected to transient loading. A new and rigorous
approach is presented in its theoretical and experimental aspects. First. for line:lr-e1astic materials
it is shown that crack-tip singularities are related to global mechanical parameters (forces-dis
placements on the boundaries of the structure) through the path-independent /(-integral which
includes dynamic elTccts. K,d (/) is thus determincd hy solving a time convolution equation. Pmctical
implementatilln of the method is then illustrated by a simple and original experimental procedure
together with its numerical simul;ltion. E"perimenlal and numerical results are finally used to
valid'lte the feasihility .lnd elliciency of the proposed method.

I. INTRODUCTION

When a cracked structure is subjected to dynamk loading, it is important to determine the
corresponding stress intensity t~lctor as a first step towards fracture prediction. Practical
aspects of the problem involve actual structures and materials subjected to arbitrary
dynamic loads. The problem addressed here is that of the determination of the evolution
of the dynamic stress intensity factor KItJ(t) from the very beginning of the loading.

Ditferent types of approaches arc currently available. The first type is based on an
extension of static rcsults [e.g. Ricc's J-integral (1968)J for the dynamic case. Such an
approach is not supportcd by thcoretical arguments and it can sometimes lead to totally
erroneous results (Mall el al., (980). Much better results are obtained with the second type
of approach of a hybrid experimental-numerical character (Yang et al., (988). Here, each
experiment must be numerically simulated including crack propagation aspects. Another
type of approach is based on direct obscrvations of crack-tip phenomcna, such as light
reflection (or transmission) in the so-called method ofcaustics (Manogg, 1966; Beinert and
Kalthoff, 1981 ; Theocaris, 1981). Here, a relationship is derived between the shadow pattern
(shape and characteristic size) and the crack-opening mode and stress intensity factors.
Other modern methods have been reviewed by Kobayashi (1987). However, euch method
has its own limitations either in its accuracy or because of the experimental dil1iculties
encountered.

Therefore, the main objective of this paper is to treat the crack's history from the onset
of loading until its very early propagation without addressing propagation asper-ts. We
present an exact approach which is both accurate and relatively easy to implement in the
laboratory. This approach is based on a theoretical method for the determination of the
dynamic stress intensity factor given by Bui and Maigre (1988), Maigre (1990) (Section 2),
including its experimental implementation (Sections 3 and 4) and validation (Sections 5
and 6).
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2. PATH-I~DEPENDENT H-I~TEGRAL

Let n be a two-dimensional body with a crack of length a laying parallel to xI-axis, as
shown in Fig. I. The solid is linear-elastic, isotropic and homogeneous; p, E and v denote
mass density, Young's modulus and Poisson's ratio, respectively. The geometry and
dynamic loads are symmetrical with respect to XI-axis to consider fracture in pure mode I.
Let u(x, (; a) denote a displacement field on n. The load T[u] is applied on the boundary
S and depends on time ( ~ O. The body is initially at rest so that u satisfies:

{~«( ~ 0) = O.
u(t ~ 0) = O.

The superscript ( . ) indicates time derivative.
Next, define an adjoint field. V(x. (; a, r) on n such that:

{~«( ~ r) = O.
V(/ ~ r) = O.

u and V are solutions of the dynamic equ.ltions:

eJit
div O'[u] = P"

d

iJV
div O'[Vl = p ~ ,

o(

( I )

(2)

(3)

(4)

where O'[u] = I/2L(Vu +TVU) is the clastic stress tensor associated with u and L denotes the
tensor of clastic moduli.

Note that t.I and r are parameters which are held constant during the dynamic defor
mation of n. V is an auxiliary field which satisfies (4) and is subjected to (2). It should be
n:markcd that V docs not necessarily represent a physical field (e.g. displacement). Rather,

T[u)

Fig. l. Cracked oody loaded in mode I.
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V(t)

't

Fig. 2. Schcmatic reprcsentation of thc auxiliary field V as a "mirror imagc" of a physical ficld w

at fixed x.

as shown in Fig. 2. V is a "mirror image" with respect to time t = t of some physical
dynamic field. say w(x. t) at rest at t ~ t.

Next, eqns (3) and (4) are combined to yield the following conservation law:

o(V'u-U'V)
div{l1[u]'V-l1[V]'u}=p ot . (5)

By integrating (5) in the time limits Q-t. the right-hand side vanishes because of the initial
conditions for Uand the final conditions for V. (I) and (2). i.e. :

div fa' {l1[u]' V -l1[V]' u} dt = O. (6)

Equation (6) is valid for all points of 0 with the possible exception of the crack-tip where
the fields are likely to be singular. Therefore. we integrate (6) on the domain 0 with the
exclusion of Or which is part of 0 delimited by the curve r surrounding the crack-tip (Fig.
3). The result is the following expression. invariant with respect to r:

r [diV r' {l1[U]'V-l1[V]'U}dt]dO=O. yr.In-nr Jo

Upon integration of (7) by parts. it appears that:

Fig. 3. Thc intcgration domain.

(7)
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rn·i' [O'[U),v-O'[Y]'u:dtdr-fn·i':O'[U),v-O'[V]'U:dtdSJr () s "

= r nL'J~: [O'[u)·Y-O'[Y]·u}dtdL. 'I r. (8)
JL (J

where nand nLare normal unit vectors as shown in Fig. 3. The right-hand side of (8) equals
zero because the crack faces are traction-free. It can thus be seen that the leftmost term of
(8) is independent of r. Consequently. the path-independent integral H(r) is defined as
follows (Sui and Maigre. 1988; Maigre. 1990):

H(r) = ~ r i' {n·O'[u)·Y-n·O'[V)·u:dtdr. 'I r.- Jr (J

(9)

Note that H(r) is not only path-independent but it is also a pure contour integral. Among
the possible integration paths. it is particularly attractive to evaluate H(r) on the boundary
5 where forces T[u) = n' O'[u) and displacements u can be experiment.tlly measured:

H(r) = ~ i i: {T[u]·Y-T[Y)·ul-dtdS. (10)

Another interesting integration path is that obtained by letting r shrink close to the crack
tip itself.

In order to have a non-vanishing result for I/(r). the integrand of (9) must necessarily
vary as Ilr where, is the distance from the crack-tip (, = Ix - tli ,I). The displacement field
\I is known to vary asymptotically as ,Ir! and the stress licld a[ul as, I!~ when, tends to
O. Consequently. the adjoint quantity Y(x) must vary as, I!. To build such a field. we use
an auxiliary displacement field vex, (; tI) which satisfies initial conditions (I) like u and
varies as r 1/2. We dctine Y as:

Dv(x. r- t; tI)
Y(x. t; tI. r) = -----~.,_------.

Itl
(II )

It is worth noting that with this ddinition. Y satisfies not only the final conditions (2) but
also (4) because the latter is not afl'ected by an inversion of the time now.

In the vicinity of the crack-tip. u and Yare totally delined as function of Kj,J and Ki,J.
the dynamic stress intensity f.tctors associated with u and v n:spectively. Since the crack
docs not propagate during dynamic loading. the asymptotic representation of the fields is
identical in the dynamic (Freund. 1972; Achenbach. 1972) and the static cases (Irwin. 1957)
and I/(r) becomes:

,-
v2 i'I/(r) =-E Ki,J(t)Ki,J(r-t)dt.

• (J
( 12)

It can be remarked that I/(r) is a bilinear functional of two fields. say fI(r; u. v). Equations
(10) and (12) can be combined to yield:

I f{ C:V DT[V)} 1- v
2

T[u).-- .u dS=---Kj,J.Ki,J.
2 s va Du E

( 13a)

in which time integrals have been replaced by convolution products denoted by (.) and
scalar product between vectors has been implicitly assumed. In doing so, the definition of
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v (II) has been explicitly included to yield (13). Therefore. both sides of (13) are expressed
from now on as functions of displacement fields u and v.

Equation (13) is quite central since it relates global mechanical quantities (dis
placements and forces) associated with the external boundary of the solid to mechanical
quantities (stress intensity factors) which characterize the crack-tip itself. In other words.
it transfers (local) information which is not easily accessible to the border on which
measurements can be made.

This new result can be practically applied to the determination of dynamic Kjd in two
distinct ways:

-l'( # u) and h'/('a are determined either analytically or numerically. So is Kid and
this is done once for all for the structure to be studied and stored for later use. Equation
(13) requires that u and T[u] be determined for the actual structure and loading conditions.
say by experimental means. A.1d will be obtained by solving a linear convolution equation
of the type:

( 14)

-Alternatively. one call define the auxiliary field v such that v E u. However deter
mination of iJu/(1a requires at least a couple of experiments with crack lengths a and a+da.
Here. K7<1 will be obtained by solving a quadratic autoconvolution equation of the type:

K~" * K~<1 = 1/(.; u. u) (15)

[in both cases II has been multiplied by the constant £/(1 - v2
)].

Before 'Iddressing practical aspects of the problem. some general rem'lrks c.tn be made:

-Equation (l3a) is the dynamic counterpart of the static expression (Irwin. 1957) in
which simple products have been replaced by convolution products to take into account
dyn'lmic 'Ispects.

-Using L.tplace transforms. Nilsson (1973) developed .10 expression similar to (l3a).
However. his expression might prove ditlicult to use for pructical purposes since it would
involve direct and inverse Laplace transforms of actual signals which arc necessarily of
limited durution. Such truncature will most likely affect the determination of the dynamic
stress intensity.

-For arbitrary loads and geometries. (1341) c.tn be replaced by:

I1{ iJv DT[V]} I - v~
:; T[u] * :i- --~,- * u dS = -£- (K~d * Kid + K~I.J * Klhd.
_ s ell (dl •

( 13b)

Mixed mode separation into pure modes I and II can be performed in this dynamic case
according to the guidelines provided for the static case by Ishikawa et al. (1979) and Bui
(1983). This is achieved by inserting into (13b) auxiliary fields Vi and VII which correspond
to pure modes I and 11 respectively.

-Contrary to the H-integral. the previously defined dynamic i-integrals (Bui. 1978;
Kishimoto et al.. 1980) are not pure contour integrals since they involve an area integral
over the crack-tip region.

In the following sections. experimental determination of the force-displacement
relationship is presented.
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3. EXPERIMENTAL TECH;-';IQUE

The split Hopkinson bar
The split Hopkinson bar (SHB, also known as the Kolsky bar) is a convenient experi

mental technique to measure dynamic stresses and displacements on the faces of a com
pression specimen. The principle of SHB apparatus can be found in the literature (Fol
lansbee. 1985) and will only be briefly outlined here. The basic set-up consists of a pair of
long cylindrical bars (incident and transmitter). both instrumented with strain gages at their
mid-length. A striker bar impacts on the incident bar. thus setting a transient compressive
pulse which propagates through a small cylindrical compression cylinder sandwiched
between the bars. The bars remain elastic throughout the process whereas the specimen
deforms plastically. Three characteristic transient signals are recorded from the gages: the
incident CinCO and reflected signals Crcf(t) (incident bar). and the transmitted signal c,r(t)

(transmitter bar) (Fig. 4). The velocities of the bar-specimen interfaces can be determined
according to:

{
l~1 (I) = Cdc,n(1) -crcf(t)l.

llZ(t) = CLF.tr(t).
( 16)

where Iii and li~ me input (incident) and output (transmitter) velocities respectively. CL

denotes longitudinal sound velocity in the bars and t stands for time. Here, Cin and I:tr

are compressive strains (assumed positive) whereas I:rcf is tensile (assumed negative). The
corresponding net forces are given by:

{
p I (t) = EA [r.," (I) + I:rcr(t)).

['z(t) = EAr.1r(l),
( 17)

where E and II stand for Young's modulus and cross-sectional area of the bar respectively.
All sign.lls arc actually meusurcd at the mid-length of thc bars. Duc to the dispersive nature
ofthc wavcs, a phasc correction must bc applied to each wave in order to restore its original
aspect at the specimcn-bar intcrface (Davies, 1945).

gage 2face I face 2gage I~

c:::J L.--_~-=. ...r-L.--__-=__~_""
striker incident sample tranSmitter

acquisition board C~~~~~

signal

time

DAVID

Fig. 4. Split Hopkinson Bar (SHB) and signal processing apparatus.
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Fig. 5. The Compact Compression Specimen (CCS) positioned between the incident and transmitter
bars.

In the experiments described below. we used 1.65 X 10- 2 m diameter-2 m length
maraging steel b.trs. The striker. of a material and diameter identical to those of the bars.
was 5 x 10 2 m long. The gage signals were digitized with a time step of I JtS by means
of an acquisition board and subsequently processed with DAVID software (Gary and
Klepm:zko. 198H) to determine stresses und velocities .tS a function of time at the specimen
bar interfaces.

The Compact Compression Spt'cimen (CCS)
A notched compression specimen WaS specially designed to fit in the SHB apparatus.

This specimen. the Compuct Compression Specimen (CCS). was adopted as a simple
altermttive to the special techniques designed to turn the SH B apparatus into a dynamic
tensile facility (Dulry et al.• 1988). To our knowledge. the CCS is an original design which
has not been used previously. The CCS is shown in Fig. 5. The dimensions quoted are by
no means restrictive nor have they been optimized. However. the specimen thickness was
selected so that it matches the bur diameter thus enabling two-dimensional numerical
modelling. Specimens with various notch lengths were machined out of a semi-hard steel.
As the branches of the specimen get closer following progression of the compressive pulse.
the notch opens in a non-symmetrical way. this point being addressed later. The experiments
which were performed and the reported results did not involve crack propagation and/or
fracture of the specimen. The deformations remained elastic as could be ascertained both
visually and by checking the specimen dimensions prior to and after impact.

4. NUMERICAL MODELLING

Two-dimensional (plane strain) dynamic finite element analysis of the CCS was carried
out using CASTEM 2000 object oriented FEA code (developed by CEA-French Center
for Atomic Energy). The CCS was discretized into constant strain triangles and the material
model was isotropic and linear-elastic. according to the initial assumptions of an all-elastic
process. Two distinct types of calculations were performed: calculations of specimens for
calibration purposes and simulations of actual experiments.

Calibration specimen
Numerical modelling was carried out to provide numerical {cv/ca; cT[v]/ca} relation

ships in (14) which become {cu/ca; cT[u]/oa} in (15). These relationships are used to
validate the autodeconvolution method on the one hand. and provide calibration data to
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(a)

(b)

---------~~------------
Fig. (,(a). Iblf the CCS u~ed in numerical (FEM) studies for the generation of calibration data. (b)

Definition of the crack opening displ;lccmcnt (COD).

be comhincd with experimental datu in the lineur deconvolution method on the other hund.
Ilult" the CCS was unalysed and vertical displacements of the symmetry line were set to
/ero. this imposing symmetrical response of the spl.'Cimen [Fig. 6(a)\ and enforcing mode I
crack opening. A Gaussian load pulse was applied to the (incident) bar ~specimen interface.
The pulse shupe was udopted without any attempt to reproduce in detail an actual experi
mental pulse. The dynamic response of this interl~lce. i.e. the velocity-lorce relationship
was cakuluted by numericul integration of the equation of motion by meuns of the Newmurk
technique (I1uthe. 19M2). A "churacteristic" interfacial velocity was ddined as the vertical
velocity component averuged along the contact line. It is this velocity which wus used in
the subsequent upplicutions. An additionul by-product of this analysis is the dynamic crack
opening displacement (COD).

The COD was tuken here as the vertical displacement component of the point belonging
to the notch. located 2 x 10 - j m ahead and 5 x 10 - ~ m above the crack tip [Fig. 6(b»).

NUll/erical sill/ulatiotl of the experiment
In order to reproduce the actual SHB experiment while testing the overall modelling.

the following numerical experiment was undertaken: the actual SHB with sandwiched CCS
was modelled. Rigid interfacial bonding was assumed between the bars and the CCS in
order to avoid the usc of adjustable parameters such as contact stiffness (Mines. 1990). No
boundary conditions were imposed on the displacements. The input load pulse was taken
from the incident signul meusured on the incident bar during un actuul experiment. E:,n(t).
As it re,u.:hed the incident bur-specimen interface. this pulse was part reflected part trans
milled due to mechanical impedance effects. The velocity-time relationships of the two bar
specimen interf,l\;es were calculated with the above-mentioned procedure and compared
with their experimentally determined counterparts. Here too, the COD was calculated.
denned this time as the difference between the vertical displacements of two symmetrically
located points.

5. RESULTS AND DISCUSSION

Foreword
In this section. results will be presented for one experiment which can be considered

as ch'lractcristic of the above-mentioned testing procedure. Next. on the basis of these
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results. the evolution of the dynamic stress intensity factor will be calculated in a detailed
procedure to illustrate the new approach. For the sake of clarity. the various results will be
discussed as they are presented rather than in a separate section.

Experimental results
The following results were obtained for a CCS with a 17 x 10 J m long notch. Figure

7(a) shows a typical record of the measured incident force [Pon(t) = EAeon (I)]. The resulting
forces on the bar-specimen interfaces are shown in Fig. 7(b). The maximum value of P I (I)
is smaller than that of P,n(t) due to the reflected pulse. It also exceeds the maximum value
of P~(t). The two peaks are shifted in time with respect to each other with very little
overlapping. The transit time necessary for the pulse to travel through the CCS can be
identified with the time at which pulse P~ begins to form. From Fig. 7(b). this time is
roughly equal to 55 lIS. The corresponding interfacial velocities are plotted in Fig. 7(c).
Here too. there is almost no overlap and the ratio of the peaks is about 0.5. It is interesting
to note that the peak velocity lags behind the peak force by some 10 lIS.

Numerical n:sults

Numerical simulation of the experiment. The material constants of the bars and the
specimen arc listed in Table I. The calculated interfacial velocities corresponding to the input
pulse of Fig. 7(41) are shown in Fig. 8(41) in which experimental velocities have been
superposed. From this figure. it can be noted that the calculated velocities are very similar
to the measured ones (pulse shape, peak value and transit time). with a slight shift of the
calculated transmitted velocity peak with respect to the experimental one. This shift could
not be clearly identified as a numerical problem related to mesh size eITects or tothe material
constants. It seems more likely that the observed discrepancy is related to the very nature
of the interl~lcial contacts. Yet, despite its deliberate simplicity. this model reproduces
remarkably well the salient features of the actual experiment while it also validates the
hypothesis of an elastie process. The calculated corresponding COD is shown in Fig. X(h).
This result cannot be compared with its measured counterpart. However. given the accuracy
of the numerical model. it is reasonable to assume that this result is equally accurate.
Determination of the COD is valuable since this parameter which is not easily measurahle
is related to the stress intensity factor. as discussed in the next section. ;\ general trend was
noted for the maximum craek opening to occur at the time corresponding to the intersection
of P I and P~. Last. the various deformation stages of the CCS arc visualized in Fig. 9 which
shows the transient nature of the deformation as well as its lack of symmetry.

Calihration specimell. A force (F"a,)-velocity (Ii".,d relationship was generated for
a half CCS subjected to a 20 lIS long-30 kN high foree pulse. Two crack lengths of
16 x 10 .\ m and 17 x 10 J m were chosen for the analysis and the calculated average
interfacial velocities are plotted in Fig. 10.

6. TilE DETAILED PROCEDURE FOR Kid DETERMINATION

Before getting into details we can summarize the available information and its origin.
as follows:

Experimental

Simulated experiment

Numerical Calihration

I.
2.
3.
4.
5.
6.
7.
8.
9.

Input and output forces. PI(t) and P~(I).

Input and output velocities. u, (t) and li~(I).

Calculated input and output velocities.
Calculated COD.
Calibration force. Feal .
Calibration velocity for 1st crack length (a = 16 mm).
Calibration velocity for 2nd crack length (a = 17 mm).
Calibration COD for 1st crack length (a = 16 mm).
Calibration COD for 2nd crack length (a = 17 mm).
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Fig. 7(a). Typical record of the experimental incident force Pm(l) at the incident oar-specimen
interface. (b) Typical record of the net experimental incident P ,(I) and transmitted P,(I) forces at
the bar-sfX.-cimen interfaces. (c) Typical record of the experimental incident Ii I (I) and transmitted

1;,(1) velocities at the bar-specimen interfaces.
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Table I. Material constants employed in numerical
simulations

E
(paj

v p
[kg m-1j

Hopkinson bars
C.C.S.

2.0 X 10" 0.250
2.1 x lO" 0.285

8100
7800

The autodeconvolution method
We first show the application of the quadratic autoconvolution equation (15) to Kid

determination on a purely numerical example in which the relevant data bears the subscript
( )001' We use (15) with U == Deal and Kid == Ki':jal. For the sake of convenience the applied
stress is kept constant with respect to crack length, i.e. oT[Deadloa = O. We first evaluate
the left-hand side of (13) :

1 f OUcal
H(t) = 2Js T[Dead • a;; dS, (18)

where oDeol/oa is approximated by a time integration of the difference ofcalibration velocities

(a)
- experimental
---- calculated (FEM)

808020

·1

2

O+-~~+--+-"""'-+-""T--+-'d;"""'-i:--I--~"""""-'
100 '\,120 .., , ..

'........._ -.

Time [1.0E-6 sl

(b)

-coo

806020

16-

8

4

12

e
'oD 24

~
::'20

0+--+-+--+-4--+-+-+-+-l-l1-t-+--+-+-+
100 120 140

Time [I.OE·6 sl

Fig. 8(a). Experimentally and numerically (FEM) determined interfacial velocities. Both curves
have the same time origin. (b) Corresponding COD determined by FEM simulation.
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Fig. 9. I'FM simulation of Ihe experiment. Deformed CCS al lime sleps ta) 0, (0) 50, (c) too, and
(d) 150 liS (scaling faclor for deformatiolls JOI
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Fig. 10. Cakulated (FEI'vl) vclodtics for Ihe c;dihration specimcn with crack length 16 mm and
17 mm respectively. The inpul pcak (line solid linc-::o liS wide and 30 kN highl is represented

here in dimensionkss form.
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50 60 70 8010 20

IlO t- Kid - aUlodeconvolulion (calibration data)

S -Kld-a= 16mm(FEM)

E f ---- K - a = 17 mm (FEM)
~ w "
~60

:1
!

Time [1.0E-6 sl
-20

Fig. II. Stress intensity factt1rs 1.',(1). The line line refers to 1.',(1) calculated (FEM) from reference
data with a crack length of 16 mm. Idem for the line dash\.-d line and a crack length of 17 mm. The

solid line refers to 1.',(1) calculated by autodcconvolution with calibratilln data.

(points 6 and 7). If Lical denotes the corresponding aver<tge displacement. (18) reduces to:

( 19)

Next. the stress intensity factor is determined using the autodeconvolution procedure for
1/(.) given in Ihe Appendix. This value can be compared with the value determined directly
from the calibration COD (points Xand 9) using the well-known relationship (Irwin, 1957) :

(20)

Typical results are shown in Fig. II. An excellent agreement is observed between Kid values
obtained by two radically different procedures. This example validates the method using
numerically generated data. A more concrete illustration in which actual experimental data
is used is given next.

The linear dec:onl'Olution method
We now show the application of the linear convolution equation (14) to Kid deter

mination using experimental and calibr<ttion data. In this case. v == Ucal and U == u<,p. the
experimentally determined displacement field. We usc lhe calibration value K;d == K~·I

determined by either of lhe above menlioned methods (autodeconvolution or directly from
calibration COD). 1/(.) is calcuhlted according to (13):

~
(·"c,1

I/(r) = F.,p. ':1.. ' =
(ill

I - v~
1'"'''1' PUC'llE ... -'" Id • '" IU • (21 )

Fe,p is now built with the actual forces (point I). and it can be shown that Fe,,, = 1/2(PI + P~).

This amounts to symmetrizing an inili'll1y non-symmetrical experiment to isolate crack
opening mode I. Kid == K~'" values arc obtained by linear deconvolution of 1/(.) (see
Appendix). For comjJarison purposes only, we also calculated Kid by applying (20) to COD

$AS 29:2J-F
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r - Kid - linear deconvolution (experimental data)
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Fig. 12. Stress intensity factors K,(t). The fine line refers to Kr(t) determined from the FEM
simulation of the actual experiment. The fine solid line refers to KI(t) obtained by linear decon

volution with experimental data.

values (point 4) from the FEM simulation of the experiment. In Fig. 12 are plotted Kid

values determined by linear deconvolution and from the COD values. Here too. an excellent
agreement between the two can be noted.

7. CONCLUDING REMARKS

A ncw mcthod for the experiment.1I determin<ltion of the dyn<lmic stress intensity
factor "Id(t) in linear 'c(<lstic m.tterials has been developed. This method is rigorous <lnd
dymtrnic cllccts <Ire inherently taken into <lccount. Loc<ll cmck-tip informalion is accessed
by me<lns ofglobalmech<lnieal dat<l (foreesdisplaeements on the specimen outer bound<lry)
thanks to the path-independent II-integral.

This approadl has been tested <lnd valid<lted. A speci<llly devised experimental specimen
(Comp<lct Compression Specimen) h<ls been used in <I standard split Hopkinson b<lr appar
<ltus to me<lsure the required force-displ<lcement relationships. Realistic numerical mod
elling of the experiments has <llso been performed.

The applicability of our approach is by no means restricted to the experimental set-up
presented here. It applies equally well to <lny other system in which boundary forces and
displacements can be me.tsured and proper numerie<ll modelling carried out.

Two different options for the determin<ltion of K,J(t) have been introduced: the
autodeconvolution <lnd the linear deconvolution methods. In the first method. two distinct
experiments should be performed with slightly different crack lengths. This was carried out
<IS a purely numerical simulation but this can also be done experimentally. In the second
method. experimental results were combined with numerical (calibration) results. With
both methods. K,J(t) was successfully obtained by solving a time convolution equation.

The outlined procedure for K,J(t) determination also applies to the determin<ltion of
KlJd(r) provided anti-symmetrical loads <Ire considered in the calibration calculation.

This method is relatively simple and docs not require a cumbersome experimental set
up or tedious repeated numerical calculations. It is quite versatile without restrictions on
the type and symmetry of the imposed 10<lds. cmck opening mode. (linear-elastic) material
and cmck geometry. The only restriction of the method is th<lt it applies up to the instant
of crack initiation but not to its subsequent propagation. It thus seems that this method
can be successfully applied to a wide range of problems in the fields of fracture mechanics
and materials science. including dynamic fmcture toughness determination.

Ackn(",1('(~q(·",(·trI.<-The authors would like 10 acknowledgc useful discussions with D. Boussaa. G. Gary. V. dc
Greef and J. R. Klepaezko.
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APPENDIX

An a/9or;tIt", jt" .101t·;IIY "/filS ( (4) alit/ ( 15)
It is well est'lhlished that the convolution equation A. X = /f admits no solution except for particular

"compatible" couples CA. /f). It is also known thaI such an equation is quitc unstable with resp~'Ct to A and /f.
In othcr words. if X exists as a solution. it can be perturbed by an arbitrary value L\X and yct (X+L\X) is also
almost a solution. that is A. eX+L\.\') 'l: fI (Schwartz. 1lJ79; Tikhonov and Arscnine. 1<)76). The above-mentioned
applies to the less "c1assil.:al" equation X. X = /f.

In the present case. A and fI arc not arbitrary. Rather. thcy arc gcncrated by a physical problem. a fact which
ensurcs "compatibility". We also know that a solution X must exist. Sincc X is now the dynamic stress intensity
factor. one can reasonably s~'\:ulate that the shape of this solution will somehow be similar to the shape of the
loading pulse with the s.lme degree of regularity. Furthermore. we deal here with discretc datapoints digitized in
time either numerically or experimentally. Consequently. (14) and (15) arc discretized as:

2: A.,Xp = fl. and
I'-ll

2: X._pXp = fl•. respectively.,_0

Ilowever. it can be shown that direct inversion of these triangular systems leads to highly oscillatory solutions
in contradiction with the physical character of the solution (Maigre. 1990).

Therefore. to stahili7.e the solution. a !lest-lit is obtained by adding to the problem the constraint th'lt the
solution huilt from the even order terms should be as close as possible to that obtained from the odd order terms.
Detcrmin.. tion of a physic.. lly sound solution now becomes a minimi7.ation problem with constraints.


